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Abstract. We introduce a nonextensive entropy functionalSη whose optimization under simple
constraints (mean values of some standard quantities) yields stretched exponential probability
distributions, which occur in many complex systems. The new entropy functional is characterized
by a parameterη (the stretching exponent) such that forη = 1 the standard logarithmic entropy
is recovered. We study its mathematical properties, showing that the basic requirements for a
well-behaved entropy functional are verified, i.e.Sη possesses the usual properties of positivity,
equiprobability, concavity and irreversibility and verifies Khinchin axioms except the one related
to additivity sinceSη is nonextensive. The entropySη is shown to be superadditive forη < 1 and
subadditive forη > 1.

1. Introduction

The study of the mathematical properties and physical applications of new formulations of
the maximum entropy (ME) principle based on generalized or alternative entropic measures
constitutes a currently growing field of research in statistical physics [1–3]. This line of inquiry
has been greatly stimulated by the work of Tsallis [4], who developed a complete and consistent
thermostatistical formalism on the basis of a generalized nonextensive entropic functional.

The ME principle, introduced by Jaynes on the basis of Shannon’s information measure, is
a powerful tool widely used in many areas of both experimental and theoretical science. Jaynes
advanced this principle as a new foundation for Boltzmann–Gibbs statistical mechanics [5].
However, nowadays its range of applications embraces a variety of applied fields such as
image reconstruction and other inverse problems with noisy and incomplete data [6], time
series analysis [7] and the approximate solution of partial differential equations [8].

Despite the great success of the standard ME principle, it is a well known fact that there
are many relevant probability distributions in nature which are not easily derivable from the
Jaynes–Shannon prescription. Lévy distributions constitute an interesting example showing
such difficulties. If one sticks to the standard logarithmic entropy,awkward constraints
are needed in order to obtain Lévy-type distributions [9]. However, Jaynes ME principle
suggests in a natural way the possibility of incorporatingalternative entropy functionalsto
the variational principle. Actually, there exist many physical scenarios where the standard
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statistical description based on the Boltzmann–Gibbs–Shannon entropy fails, such as self-
gravitating systems [10], electron-plasma two-dimensional turbulence [11], and self-organized
criticality [12], among many others (see [13]). An important feature shared by all these systems
is their nonextensive behaviour, suggesting that anonextensive(nonadditive) entropy functional
might be appropriate for their thermostatistical description.

Indeed, it has been recently noted that many of the above-mentioned problems involve
a family of probability distributions derivable from the extremalization of a generalized
nonextensive entropy measure recently introduced by Tsallis [1]. This entropy, defined by

STq =
w∑
i=1

pi − pqi
q − 1

(1)

is characterized by a real parameterq associated with the degree of nonextensivity.STq
coincides with the standard logarithmic entropy in the limitq → 1. The optimization of Tsallis
entropy under simple constraints yields power law probability distributions while, in the limit
q → 1, the simple exponential law is recovered. The new thermostatistical formalism derived
from theSTq entropy has been shown to consistently generalize the relevant properties of the
Boltzmann–Gibbs statistics [1,14]. As a consequence, many interesting physical applications
have already been worked out [15]. Besides the fundamental aspects, there are implications
of practical relevance such as its application to the solution of partial differential equations [8]
or to optimization problems [16].

To a great extent, the success of Tsallis proposal is due to the ubiquity of power law
distributions in nature. However, other important families of distributions, the stretched
exponential ones, are also frequent in complex systems. Stretched exponential probability
distributions appear, for instance, in the description of turbulent flows [17]. Many other
examples of these distributions in nature and economy are listed by Laherrere and Sornette [18].
These authors also call attention to the possibility that distributions usually classified as power
laws may actually correspond to stretched exponential ones.

On the other hand, anomalous slow relaxations in disordered systems (glassy systems,
quasicrystals, polymers, strongly interacting materials, etc) [19] often follow the stretched
exponential form. The anomalous decay of the density of species in diffusion-controlled
reactions may follow power laws as well as stretched exponential ones [20]. These latter
examples do not involve probability distributions of the stretched exponential form directly.
However, on the basis of extreme deviations in random multiplicative processes, stretched
exponential distributions can be applied to rationalize stretched exponential relaxations [21].

All these considerations suggest the possibility that new useful entropy functionals may
be lurking behind stretched exponential probabilities. Thus, our present goal is to explore the
properties of a new nonextensive entropy functional whose optimization yields such probability
distributions. A full understanding of the generic mechanisms underlying stretched exponential
laws, which up to now remain mainly at the phenomenological level, is still lacking. Hence,
the study of a variational approach to these ubiquitous functions may also throw new insights
onto their physical origin.

This paper is organized as follows. In section 2 we present the new entropySη. In
sections 3 and 4 we show thatSη verifies the usual requirements for a mathematically well
defined entropy functional. We illustrate these properties by means of two-state systems in
section 5. Finally, section 6 contains some final remarks.



ME approach to stretched exponential probability distributions 1091

2. The new entropy functional

Let us begin by defining the following entropy functionalSη associated with a given
discrete probability distribution{pi, i = 1, . . . , w} (the extension to the continuous case
is straightforward)

Sη =
w∑
i=1

sη(pi) (2)

where

sη(pi) ≡ 0
(
η + 1

η
,− lnpi

)
− pi0

(
η + 1

η

)
. (3)

Here,η is a positive real number,

0(µ, t) =
∫ ∞
t

yµ−1e−y dy =
∫ exp(−t)

0
[− ln x]µ−1 dx µ > 0 (4)

is the complementary incomplete Gamma function, and0(µ) = 0(µ, 0) the Gamma function.
By recourse to the definition (3), it is easy to verify that in the caseη = 1 the standard entropy
S1 = −

∑w
i=1pi lnpi is recovered. This particular choice ofsη(pi) will soon become clear.

Optimization ofSη under the following constraints
w∑
i=1

pi = 1 (5)

〈O(r)〉 ≡
w∑
i=1

piO(r)i = O(r)η (r = 1, . . . , R) (6)

where{O(r)} are observables and{O(r)η } are finite known quantities, yields

pi = exp

(
−
[
0

(
η + 1

η

)
+ α +

R∑
r=1

βrO(r)i
]η)

i = 1, . . . , w (7)

whereα and {βr} are the Lagrange multipliers associated to the constraints (5) and (6),
respectively. So, the optimization ofSη constrained under fixed mean values of relevant
quantitiesO(r) yields stretched exponentials of the form given by expression (7).

Actually, the functionsη(pi)was found by precisely requiring the probabilitiespi , arising
from the stated variational problem, to be of the form (7). That is to say we have solved the
inverse problem of obtaining the entropy functional from a given maximum entropy probability
distribution. This procedure could be applied to arbitrary classes of probability distributions
but here we are interested in the stretched exponential one.

3. Khinchin axioms

Khinchin proposed a set of four axioms [22], which are usually regarded as reasonable
requirements for a well behaved information measure. Our entropy measureSη verifies the
first three of them:

(i) Sη = Sη(p1, . . . , pw), i.e. the entropy is a function of the probabilitiespi only.
(ii) Sη(p1, . . . , pw) 6 Sη(

1
w
, . . . , 1

w
) ≡ S

equipr.
η (w), i.e. Sη adopts its extreme at

equiprobability (this property will be proved in section 4).
(iii) Sη(p1, . . . , pw) = Sη(p1, . . . , pw, 0) this property, known asexpansibility, is clearly

verified sincesη(0) = 0.
(iv) The fourth Khinchin axiom concerns the behaviour of the entropy of a composite system

in connection to the entropies of the subsystems. We will comment on this axiom later.
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4. General mathematical properties

Let us consider other interesting properties related to positivity, certainty, concavity,
equiprobability, additivity and irreversibility.

4.1. Positivity

It is plain from equation (3) thatsη(0) = sη(1) = 0 and also that

d2sη

dp2
i

= −1

η

[− lnpi ]
1
η
−1

pi
< 0 for 0< pi < 1. (8)

Consequently,sη(pi) is a positive quantity forpi ∈ (0, 1). This, in turn, implies thepositivity
condition:

Sη > 0. (9)

4.2. Certainty

The equality symbol in equation (9) holds only atcertainty, i.e.

Sη(1, 0, . . . ,0) = 0. (10)

Indeed,Sη vanishesif and only if we have certainty.

4.3. Concavity

Considering(p1, . . . , pw) as independent variables, the second partial derivatives ofSη are

∂2Sη

∂pj∂pk
= −1

η

[− lnpj ]
1
η
−1

pj
δjk < 0 for 0< pj < 1. (11)

Now, if we incorporate the constraint
∑w

i=1pi = 1, as it defines a convex set, expression (11)
guarantees definiteconcavityover probability space.

4.4. Equiprobability

Taking into account the normalization condition, letpw be the dependent probability. In that
case the first derivatives ofSη are

∂Sη

∂pj
= [− lnpj ]

1
η − [− lnpw]

1
η ∀j 6= w. (12)

Therefore, the first derivatives vanish forpj = pw, ∀j . SinceSη has negative concavity, then
it is maximal at equiprobability.

A well-behaved entropy should also be, at equiprobability, a monotonically increasing
function of the number of statesw. We will show thatSη verifies this property. From the
definition ofSη,

Sequipr.
η (w) = w0

(
η + 1

η
, lnw

)
− 0

(
η + 1

η

)
(13)

then

dSequipr.
η

dw
= 0

(
η + 1

η
, lnw

)
− [ln w]

1
η

w
. (14)
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By rewriting equation (14) as

dSequipr.
η

dw
=
∫ ∞

lnw
y

1
η e−y dy +

∫ ∞
lnw

d(y
1
η e−y)
dy

dy (15)

it is clear that

dSequipr.
η

dw
= 1

η

∫ ∞
lnw

y
1
η
−1e−y dy = 1

η
0

(
1

η
, lnw

)
(16)

which is a positive quantity (recall thatη > 0). Therefore,Sequipr.
η (w) is an increasing function

of w.

4.5. Nonextensivity

We now analyse the relation of the entropy of a composite system with those of its subsystems.
Let us consider systemsA andB with associated probabilities{ai, i = 1, . . . , wA} and
{bj , j = 1, . . . , wB}, respectively. If systemsA andB are independent, i.e. systemA⊕B has
associated probabilities{aibj ; i = 1, . . . , wA; j = 1, . . . , wB}, then the entropySη(A⊕ B)
of the composite system minus those of the subsystems, following the definition ofSη, is

1Sη(A,B) ≡ Sη(A⊕ B)− Sη(A)− Sη(B)

=
wA∑
i=1

wB∑
j=1

∫ aibj

0
dp fη(p)−

wA∑
i=1

∫ ai

0
dp fη(p)−

wB∑
j=1

∫ bi

0
dp fη(p)

+
∫ 1

0
dp fη(p) (17)

with fη(p) ≡ [− lnp]1/η. After some manipulations, one gets

1Sη(A,B) =
wA∑
i=1

wB∑
j=1

aibj

∫ 1

0
dp fη(p)Fη(p, ai, bj ) (18)

where

Fη(p, ai, bj ) ≡
(

1 +

[
1 +

ln ai
lnp

+
ln bj
lnp

]1/η

−
[
1 +

ln ai
lnp

]1/η

−
[
1 +

ln bj
lnp

]1/η
)
. (19)

If η = 1, thenFη(p, ai, bj ) = 0 and the additivity property of the standard entropy
S1(A⊕B) = S1(A)+S1(B) is recovered. However, ifη < 1,Fη(p, ai, bj ) = 0 only ifai = 1 or
bj = 1 (certainty for at least one of the subsystems), otherwise,Fη(p, ai, bj ) > 0. In fact, let us
consider the functionG(x, y) = 1 + [1 +x +y]1/η− [1 +x]1/η− [1 +y]1/η. SinceG(0, y) = 0,
it is apparent that forx, y > 0 andη < 1, ∂G/∂x > 0 and, therefore,G(x, y) > 0. An
analogous reasoning is valid forη > 1. In this latter caseFη(p, ai, bj ) < 0. Consequently,
Sη(A⊕ B) is superadditivefor η < 1 andsubadditivefor η > 1. The nonadditivity ofSη for
η 6= 1 reflects the nonextensivity of composite systems.

4.6. Irreversibility

One of the most important roles played by entropic functionals within theoretical physics is to
characterize the ‘arrow of time’. When they verify anH -theorem, they provide a quantitative
measure of macroscopic irreversibility. We will now show, for some simple systems, that the
present measureSη satisfies anH -theorem, i.e. its time derivative has a definite sign.
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Let us calculate the time derivative ofSη

dSη
dt
=

w∑
i=1

[− lnpi ]
1
η

dpi
dt

(20)

for a system whose probabilitiespi evolve according to the master equation

dpi
dt
=

w∑
j=1

[Pjipj − Pijpi ] (21)

wherePij is the transition probability per unit time between microscopic configurationsi and
j . Assuming detailed balance, i.e.Pij = Pji , we obtain from (20)

dSη
dt
= 1

2

w∑
i=1

w∑
j=1

Pij (pi − pj )([− lnpj ]
1
η − [− lnpi ]

1
η ). (22)

In each term of the above expression, both factors involvingpi andpj have the same sign for
η > 0, then we obtain

dSη
dt
> 0. (23)

The equality holds for equiprobability, i.e. at equilibrium, while in any other cases the entropy
Sη increases with time. Therefore,Sη exhibitsirreversibility.

4.7. Jaynes thermodynamic relations

It is noteworthy that, within the present ME formalism, the usual thermodynamical relations
involving the entropy, the relevant mean values, and the associated Lagrange multipliers, i.e.

∂Sη

∂〈O(r)〉 = βr (24)

are verified. Hence, our formalism exhibits the usual thermodynamical Legendre transform
structure. Actually, this property is verified by a wide family of entropy functionals [2].

5. Two-state systems

In order to illustrate some of the above properties, we consider a two-state system (with
associated probabilities{p, 1− p}). In this case,Sη depends only on the variablep. In fact,
from its defintion, we have

Sη(p) = 0
(
η + 1

η
,− lnp

)
+ 0

(
η + 1

η
,− ln[1− p]

)
− 0

(
η + 1

η

)
. (25)

The shape ofSη(p) for different values ofη is shown in figure 1, which exhibits the positivity
and concavity ofSη. In fact, from expression (25), the first derivative ofSη(p) vanishes at
p = 1

2 and d2Sη/dp2 < 0∀p. Since the second derivative is always negative,Sη(p) is maximal
at equiprobability. Moreover, as shown in the general case, taking into account the concavity
of Sη and thatSη vanishes at the certainty, thenSη is positive for allp.

The subadditivity and superadditivity ofSη is illustrated in figure 2(a) for two identical
and independent two-state systemsX, through the plot of the relative difference(1Sη)rel. =
[Sη(X ⊕ X) − 2Sη(X)]/Sη(X ⊕ X) between the entropy of the composite system and those
of the subsystems as a function ofp. Figure 2(b) exhibits the behaviour of(1Sequipr.

η )rel.

for two-state systems, at equiprobability, as a function ofη. This behaviour is qualitatively
representative of that of any two systems with arbitrary number of states at equiprobability.
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Figure 1. (a) EntropySη for a two-state system (w = 2)
as a function ofp for different values ofη indicated on
the figure. (b) S̃η ≡ Sη/0( η+1

η
) versusp. Note that, as

η decreases,Sη flattens aroundp = 1
2 .

Figure 2. The subadditivity and superadditivity ofSη. (a)
(1Sη)rel. = 1− 2Sη(X)/Sη(X ⊕ X) as a function ofp,
for the composition of two identical and independent two-
state systemsX with associated probabilities{p, 1− p}.
(b) (1Sequipr.

η )rel. as a function ofη for two-state systems

at equiprobability. Asη→ 0, (1Sequipr.
η )rel. → 1

3 , while

asη→∞, (1Sequipr.
η )rel. →−0.40449. . ..

6. Final remarks

We have shown that the entropy functionalSη, inspired in stretched exponential probabilities,
verifies the main properties usually regarded as essential requirements for useful entropy
functionals. The entropySη verifies the first three Khinchin axioms. It is superadditive
for η < 1 and subadditive forη > 1. Sη also satisfies the requirements of positivity,
equiprobability, concavity and irreversibility. Jaynes thermodynamic relations are also verified.
It is worth remarking that these are not trivial properties that can be verified by any conceivable
functional of a probability distribution. In fact, for instance, the well known Renyi entropies do
not exhibit definite concavity for arbitrary values of their parameter. Although those properties
were shown here for the discrete case, they are expected to be valid also for continuous variables.

Concerning irreversibility, it is worthwhile making some comments on the limitations
of our treatment. The requirement of microscopic detailed balance is equivalent to assume
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that the equilibrium state is given by the uniform probability distribution. However, there are
many important situations where the equilibrium distribution is not constant [23]. The proper
way to encompass these more general settings is to formulate anH -theorem in terms of a
relative entropymeasure [23]. For example, the stationary solutions of the Fokker–Planck
equation are, in general, not uniform [24]. Consequently, the Boltzmann–Gibbs entropy
does not verify anH -theorem. However, the Kullback relative entropy betweentwo time-
dependent solutionsof the Fokker–Planck equation does exhibit a monotonous time behaviour
characterizing irreversibility [24]. Similar results have recently been obtained within Tsallis
q-nonextensive formalism [25]. Some interesting related work has also been reported in [26].
H -theorems for the general Liouville equation, involving just one of its solutions, have been
obtained there. The main ingredient of those derivations was the definition of a entropic
functional on the basis of an adroitly chosen phase space measure [25, 26]. However, that
procedure is tantamount to using the relative entropy between the considered solution of the
Liouville equation and the stationary solution [25]. From the above comments we can conclude
that in order to extend ourH -theorem to the case of general master equations it is necessary
to first generalize the concept of relative entropy. That line of development, though worth
pursuing, is beyond the scope of this work.

The properties verified bySη suggest that it might be a useful measure for describing
nonextensive physical phenomena as well as for practical applications. Our derivation of the
stretched exponential distributions from a ME principle may lead to new physical insights, as
happened in the case of Jaynes ME approach to the ensembles of standard statistical mechanics
[5]. Once the proper ME variational scheme leading to a particular family of distributions is
identified, the scope of possible applications may be increased in a considerable way. For
instance, the ME prescription can be implemented to obtain useful ansatz for the approximate
description of time dependent processes [8]. A case story illustrating the importance of an
appropriate ME principle yielding a particular kind of probability distributions is provided
by Tsallis nonextensiveq-formalism [1]. Tsallis (power-law) distributions have been known,
within a variegated set of (apparently) unrelated scenarios, for a long time. For instance,
polytropic distributions in stellar dynamics have been known since the beginning of this
century [10]. However, the underlying connections between some of the power distributions
appearing in various physical situations only began to be understood after the discovery of
Tsallis ME principle [4, 15]. In the case of the new nonextensive entropic measure that we
are introducing here, it would be important to clarify the physical meaning of the parameter
η, and to understand why nature chooses, in some situations, to maximize the functionalSη.
The only way to attain such an understanding is by a detailed study of the dynamics of each
particular system described by stretched exponential distributions. We hope that our present
contribution may stimulate further work within this line of inquiry.
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